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Deep Space One-way Radio Occultation with Global SmallSats Constellation*

• Science
• Intersatellite radio occultations from a smallsat constellation around Mars or Venus provide high vertical resolution 

measurements of temperature and pressure (in neutral atmosphere) and electron density (in ionosphere) with high spatial 
and temporal coverages that address high-priority MEPAG and VEXAG objectives.

• Two-way does not need very good clock, but adds system complexity.
• One-way need on-board clocks with good short-term stability.

• Specific science due to clock technology reality
• Mars lower altitude atmosphere

• MEPAG goal II, Mars climate history
• A1.1: Measure the state and variability of the lower atmosphere from turbulent scales to global scales (High Priority).

• MEPAG goal IV, Prepare for Human Exploration
• B1.2: monitor surface pressure and near surface meteorology (High Priority)
• B1.3: Measure temperature and aerosol under dusty conditions.

• Planets with thick atmosphere, i.e. Venus, Titan

• Requirements on on-board clocks
• Stability of 10-13 at 100s

• à Need assist from atom/molecular
• Size, Weight and Power constraints: <<1L, <<1.3kg, <<10W. 

• à Need Integrated technology in electronics, mechanics and photonics.
• Technology with inherent merits of long lifetime, high reliability, radiation-hardened, low environmental sensitivities.

• à Need simple architecture and leverage from proven technology/components, better COTS

Complex
Trade-
space

* http://www.lcpm12.org/wp-content/uploads/2017/08/0910-0930-Williamson.pdf, Williamson/Mannucci/Ao

RO coverage over 7 days 
from a constellation of 3

http://www.lcpm12.org/wp-content/uploads/2017/08/0910-0930-Williamson.pdf
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• Key issue 1: CMOS Receiver Noise: 
500pW/√Hz --> 30 pW/√Hz (low risk)

• Key issue 2: Drift caused by vacuum and 
cavity pulling: UHV high temperature 
bakeout, cavity-mode locking (low risk)

• Key issue 3: Not enough participating 
molecules (low SNR): Single channel to 
multi-channel scalability (high risk)
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Concept: Molecular-assisted miniaturized oven-controlled crystal oscillator

“Snake”* “Honey-Comb”**

Key 1: Scalability
(JPL-MIT)

*C. Wang et al., Nature Electronics 1, 421 (2018)

Key 2: Receiver Noise
MIT-JPL

CMOS Receiver 
Noise:
500pW/√Hz --> 30 
pW/√Hz
considered low risk

Key 3: Drift Fix
JPL-MIT

• UHV high 
bakeout WG

• Cavity Mode 
locking


